# 概念以及原理 Kubernetes`Service`定义了这样⼀种抽象: ​ ⼀个`Pod`的逻辑分组,⼀种可以访问它们的策略,通常称为微服务。这⼀组`Pod`能够被`Service`访问到,通常是通过`LabelSelector` image-20240912140110844 Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-proxy会基于监听的机制发现这种Service的变动,然后**它会将最新的Service信息转换成对应的访问规则**。 image-20240912152844652 # 工作模式 kube-proxy目前支持三种工作模式: ## userspace模式 ​ userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被Iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。 image-20240912170627727 ## iptables模式 ​ iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试。 image-20240912170931956 ## ipvs模式 ​ ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。 image-20240912171043118 ```yaml # 创建三个pod apiVersion: apps/v1 kind: Deployment metadata: labels: app: myapp-deploy name: myapp-deploy spec: replicas: 3 selector: matchLabels: app: myapp-deploy template: metadata: labels: app: myapp-deploy spec: containers: - name: myapp image: aaronxudocker/myapp:v1.0 resources: limits: memory: "128Mi" cpu: "500m" ports: - containerPort: 80 ``` ```bash # 启动一个负载均衡的service $ kubectl create svc clusterip myapp-deploy --tcp=80:80 # 修改ipvs $ kubectl edit configmap kube-proxy -n kube-system mode: "ipvs" # 删除kube-proxy的pod $ kubectl delete pod -n kube-system -l k8s-app=kube-proxy pod "kube-proxy-ckwsj" deleted pod "kube-proxy-t729f" deleted pod "kube-proxy-z6dt8" deleted # 查看pod创建的状态 $ kubectl get pod -n kube-system -l k8s-app=kube-proxy NAME READY STATUS RESTARTS AGE kube-proxy-948s5 1/1 Running 0 3s kube-proxy-ggpwj 1/1 Running 0 3s kube-proxy-v7lgs 1/1 Running 0 3s # 查看虚拟IP地址 $ kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE myapp-deploy ClusterIP 10.9.86.78 80/TCP 6m54s # 查看ipvsadm的状态 $ ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.9.86.78:80 rr -> 10.244.140.106:80 Masq 1 0 0 -> 10.244.196.141:80 Masq 1 0 0 -> 10.244.196.142:80 Masq 1 0 0 # 负载均衡的地址正好对应着pod的ip地址 $ kubectl get pod -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS myapp-deploy-57bff895d5-b2hhk 1/1 Running 0 73s 10.244.196.142 node01 myapp-deploy-57bff895d5-fbln4 1/1 Running 0 73s 10.244.140.106 node02 myapp-deploy-57bff895d5-frnfd 1/1 Running 0 73s 10.244.196.141 node01 ``` # Service资源清单 ```yaml kind: Service # 资源类型 apiVersion: v1 # 资源版本 metadata: # 元数据 name: service # 资源名称 namespace: default # 命名空间 spec: # 描述 selector: # 标签选择器,用于确定当前service代理哪些pod app: nginx type: # Service类型,指定service的访问方式 clusterIP: # 虚拟服务的ip地址 sessionAffinity: # session亲和性,支持ClientIP、None两个选项 sessionAffinityConfig: clientIP: timeoutSeconds: 120 # session的过期时间 ports: # 端口信息 - protocol: TCP port: 3017 # service端口 targetPort: 5003 # pod端口 nodePort: 31122 # 主机端口 ``` 可以使用如下命令得到基本的yaml格式的文件 ```bash $ kubectl create svc clusterip nginx --tcp=80:80 --dry-run=client -o yaml $ ipvsadm -lnc ``` `spec.type`可以选择的类型 - ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问 - NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务 - LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持 - ExternalName: 把集群外部的服务引入集群内部,直接使用 # Service使用 ```yaml # 创建三个pod apiVersion: apps/v1 kind: Deployment metadata: labels: app: myapp-deploy name: myapp-deploy spec: replicas: 3 selector: matchLabels: app: myapp-deploy template: metadata: labels: app: myapp-deploy spec: containers: - name: myapp image: aaronxudocker/myapp:v1.0 resources: limits: memory: "128Mi" cpu: "500m" ports: - containerPort: 80 ``` 测试三个pod ```bash $ kubectl get pod -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES myapp-deploy-57bff895d5-b2hhk 1/1 Running 0 30m 10.244.196.142 node01 myapp-deploy-57bff895d5-fbln4 1/1 Running 0 30m 10.244.140.106 node02 myapp-deploy-57bff895d5-frnfd 1/1 Running 0 30m 10.244.196.141 node01 # 查看一下访问情况 $ curl 10.244.196.142/hostname.html myapp-deploy-57bff895d5-b2hhk $ curl 10.244.140.106/hostname.html myapp-deploy-57bff895d5-fbln4 $ curl 10.244.196.141/hostname.html myapp-deploy-57bff895d5-frnfd ``` ## ClusterIP类型的Service ```yaml apiVersion: v1 kind: Service metadata: name: service-clusterip spec: selector: app: myapp-deploy # clusterIP: 172.16.66.66 # service的ip地址,如果不写,默认会生成一个 type: ClusterIP ports: - port: 80 # Service端口 targetPort: 80 # pod端口 ``` 查看运行结果 ```bash $ kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service-clusterip ClusterIP 10.13.125.29 80/TCP 22s $ kubectl describe svc service-clusterip Name: service-clusterip Namespace: default Labels: Annotations: Selector: app=myapp-deploy Type: ClusterIP IP Family Policy: SingleStack IP Families: IPv4 IP: 10.13.125.29 IPs: 10.13.125.29 Port: 80/TCP TargetPort: 80/TCP Endpoints: 10.244.140.106:80,10.244.196.141:80,10.244.196.142:80 Session Affinity: None Events: $ ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.13.125.29:80 rr -> 10.244.140.106:80 Masq 1 0 0 -> 10.244.196.141:80 Masq 1 0 0 -> 10.244.196.142:80 Masq 1 0 0 $ while true;do curl 10.13.125.29/hostname.html; done myapp-deploy-57bff895d5-b2hhk myapp-deploy-57bff895d5-frnfd myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-b2hhk myapp-deploy-57bff895d5-frnfd myapp-deploy-57bff895d5-fbln4 ``` ## Endpoint ​ Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。必须要满足就绪探测。 ​ 一个Service由一组Pod组成,这些Pod通过Endpoints暴露出来,**Endpoints是实现实际服务的端点集合**。换句话说,service和pod之间的联系是通过endpoints实现的。 image-20240912172501813 ```bash $ kubectl get endpoints -o wide NAME ENDPOINTS AGE service-clusterip 10.244.140.106:80,10.244.196.141:80,10.244.196.142:80 6m27s ``` 在deployment中添加一个就绪探测 ```yaml apiVersion: apps/v1 kind: Deployment metadata: labels: app: myapp-deploy name: myapp-deploy spec: replicas: 3 selector: matchLabels: app: myapp-deploy template: metadata: labels: app: myapp-deploy spec: containers: - name: myapp image: aaronxudocker/myapp:v1.0 resources: limits: memory: "128Mi" cpu: "500m" readinessProbe: httpGet: port: 80 path: /index1.html initialDelaySeconds: 1 periodSeconds: 3 ports: - containerPort: 80 ``` 在不满足就绪探测的情况下,是不会被endpoint采用的 ```bash $ kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-659f9975b8-2sntn 0/1 Running 0 40s myapp-deploy-659f9975b8-nd66b 0/1 Running 0 40s myapp-deploy-659f9975b8-p4j5k 0/1 Running 0 40s $ kubectl get endpoints NAME ENDPOINTS AGE service-clusterip 10s ``` 满足了就绪探测和标签被匹配上的pod会被加入endpoint中 ```bash $ kubectl exec -it myapp-deploy-659f9975b8-2sntn -- /bin/bash root@myapp-deploy-659f9975b8-2sntn:/# echo "hello world" > /usr/share/nginx/html/index1.html $ kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-659f9975b8-2sntn 1/1 Running 0 3m4s myapp-deploy-659f9975b8-nd66b 0/1 Running 0 3m4s myapp-deploy-659f9975b8-p4j5k 0/1 Running 0 3m4s $ kubectl get endpoints NAME ENDPOINTS AGE service-clusterip 10.244.140.107:80 3m1s $ ipvsadm -L -n IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.12.150.224:80 rr -> 10.244.140.107:80 Masq 1 0 0 ``` **负载分发策略** 对Service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略: - 如果不定义,默认使用kube-proxy的策略,比如随机、轮询 - 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个Pod上 此模式可以使在spec中添加`sessionAffinity: ClientIP`选项 ```bash $ kubectl edit svc service-clusterip sessionAffinity: ClientIP $ while true;do curl 10.13.125.29/hostname.html; done myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 myapp-deploy-57bff895d5-fbln4 $ ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.13.125.29:80 rr persistent 10800 -> 10.244.140.106:80 Masq 1 0 155 -> 10.244.196.141:80 Masq 1 0 0 -> 10.244.196.142:80 Masq 1 0 0 ``` ## HeadLess类型的Service 在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,kubernetes提供了HeadLiness Service,这类Service不会分配Cluster IP,如果想要访问service,只能通过service的域名进行查询。 ```yaml apiVersion: v1 kind: Service metadata: name: service-headliness spec: selector: app: myapp-deploy clusterIP: None # 将clusterIP设置为None,即可创建headliness Service type: ClusterIP ports: - port: 80 targetPort: 80 ``` ```bash $ kubectl get svc -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-headliness ClusterIP None 80/TCP 40s app=myapp-deploy $ kubectl describe svc service-headliness Name: service-headliness Namespace: default Labels: Annotations: Selector: app=myapp-deploy Type: ClusterIP IP Family Policy: SingleStack IP Families: IPv4 IP: None IPs: None Port: 80/TCP TargetPort: 80/TCP Endpoints: 10.244.140.107:80 Session Affinity: None Events: $ kubectl exec -it myapp-deploy-659f9975b8-2sntn -- /bin/bash root@myapp-deploy-659f9975b8-2sntn:/# cat /etc/resolv.conf nameserver 10.0.0.10 search default.svc.cluster.local svc.cluster.local cluster.local options ndots:5 $ dig @10.0.0.10 service-headliness.default.svc.cluster.local ;; ANSWER SECTION: service-headliness.default.svc.cluster.local. 30 IN A 10.244.140.107 service-headliness.default.svc.cluster.local. 30 IN A 10.244.196.145 service-headliness.default.svc.cluster.local. 30 IN A 10.244.196.144 ``` ## NodePort类型的Service ​ 在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是**将service的端口映射到Node的一个端口上**,然后就可以通过`NodeIp:NodePort`来访问service了。 image-20240913143156247 ```yaml apiVersion: v1 kind: Service metadata: name: service-nodeport spec: selector: app: myapp-deploy type: NodePort # service类型 ports: - port: 80 nodePort: 30002 # 指定绑定的node的端口(默认的取值范围是:30000-32767), 如果不指定,会默认分配 targetPort: 80 ``` 查看是否能够正常的访问 ```bash $ for i in {1..6};do curl 192.168.173.100:30002/hostname.html;done myapp-deploy-659f9975b8-nd66b myapp-deploy-659f9975b8-p4j5k myapp-deploy-659f9975b8-2sntn myapp-deploy-659f9975b8-nd66b myapp-deploy-659f9975b8-p4j5k myapp-deploy-659f9975b8-2sntn ``` ## LoadBalancer类型的Service ​ LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。 ![image-20240913154405309](Service/image-20240913154405309.png) ## ExternalName类型的Service ​ ExternalName类型的Service用于引入集群外部的服务,它通过`externalName`属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。 image-20240913160143805 ```yaml apiVersion: v1 kind: Service metadata: name: service-externalname namespace: dev spec: type: ExternalName # service类型 externalName: www.baidu.com #改成ip地址也可以 ``` ```bash $ kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service-externalname ExternalName www.baidu.com 7s $ dig @10.0.0.10 service-externalname.default.svc.cluster.local ;; ANSWER SECTION: service-externalname.default.svc.cluster.local. 30 IN CNAME www.baidu.com. www.baidu.com. 30 IN CNAME www.a.shifen.com. www.a.shifen.com. 30 IN A 180.101.50.242 www.a.shifen.com. 30 IN A 180.101.50.188 ``` # Ingress介绍 在前面课程中已经提到,Service对集群之外暴露服务的主要方式有两种:NotePort和LoadBalancer,但是这两种方式,都有一定的缺点: - NodePort方式的缺点是会占用很多集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显 - LB方式的缺点是每个service需要一个LB,浪费、麻烦,并且需要kubernetes之外设备的支持 基于这种现状,kubernetes提供了Ingress资源对象,Ingress只需要一个NodePort或者一个LB就可以满足暴露多个Service的需求。工作机制大致如下图表示: image-20240913161756342 实际上,Ingress相当于一个7层的负载均衡器,是kubernetes对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在**Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的反向代理配置 , 然后对外部提供服务**。在这里有两个核心概念: - ingress:kubernetes中的一个对象,作用是定义请求如何转发到service的规则 - ingress controller:具体实现反向代理及负载均衡的程序,对ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现方式有很多,比如Nginx, Contour, Haproxy等等 Ingress(以Nginx为例)的工作原理如下: 1. 用户编写Ingress规则,说明哪个域名对应kubernetes集群中的哪个Service 2. Ingress控制器动态感知Ingress服务规则的变化,然后生成一段对应的Nginx反向代理配置 3. Ingress控制器会将生成的Nginx配置写入到一个运行着的Nginx服务中,并动态更新 4. 到此为止,其实真正在工作的就是一个Nginx了,内部配置了用户定义的请求转发规则 image-20240914142642245 ## 安装helm ```bash # 安装helm,helm在kubernetes中相当于yum,是可以在线去获取资源清单,快速部署服务 $ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 $ chmod 700 get_helm.sh $ ./get_helm.sh # 初始化,可以从 https://artifacthub.io/ 中选择一个可用的仓库地址 $ helm repo add bitnami https://charts.bitnami.com/bitnami $ helm repo list NAME URL bitnami https://charts.bitnami.com/bitnami # 常见操作 $ helm repo update # 更新chart列表 $ helm show chart bitnami/apache # 查看chart基本信息 $ helm install bitnami/apache --generate-name # 部署chart $ helm list # 查看部署包,加上--all可以看到所有的 $ helm uninstall apache-1726297430 # 删除这个安装包所有的kubernetes资源 $ helm search hub wordpress # 在 helm hub(https://hub.helm.sh)上搜索helm chart $ helm search repo wordpress # 在repo中搜索 ``` ## 安装Ingress-nginx ```bash $ helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx $ helm pull ingress-nginx/ingress-nginx # 修改 values.yaml 文件 修改 hostNetwork 的值为 true dnsPolicy的值改为: ClusterFirstWithHostNet kind类型更改为:DaemonSet ingressClassResource.default:true # 关闭所有镜像的 digest # 如果是本地的helm chart,使用这个命令安装 $ kubectl create ns ingress $ helm install ingress-nginx -n ingress . -f values.yaml $ kubectl get pod -n ingress NAME READY STATUS RESTARTS AGE ingress-nginx-controller-7c4x8 1/1 Running 0 12s ingress-nginx-controller-bjk4s 1/1 Running 0 12s ``` ## 实验测试 创建如下两个资源模型 ![image-20240914152836257](Service/image-20240914152836257.png) ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: aaronxudocker/myapp:v1.0 ports: - containerPort: 80 --- apiVersion: apps/v1 kind: Deployment metadata: name: tomcat-deployment spec: replicas: 3 selector: matchLabels: app: tomcat template: metadata: labels: app: tomcat spec: containers: - name: tomcat image: tomcat:8.5-jre10-slim ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: nginx-service spec: selector: app: nginx clusterIP: None type: ClusterIP ports: - port: 80 targetPort: 80 --- apiVersion: v1 kind: Service metadata: name: tomcat-service spec: selector: app: tomcat clusterIP: None type: ClusterIP ports: - port: 8080 targetPort: 8080 ``` ### Http代理 ```yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: ingress-nginx spec: rules: - host: nginx.iproute.cn http: paths: - path: / pathType: Prefix backend: service: name: nginx-service port: number: 80 ingressClassName: nginx --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: ingress-tomcat spec: rules: - host: tomcat.iproute.cn http: paths: - path: / pathType: Prefix backend: service: name: tomcat-service port: number: 8080 ingressClassName: nginx ``` 查看运行状态 ```bash $ kubectl get ing NAME CLASS HOSTS ADDRESS PORTS AGE ingress-nginx nginx nginx.iproute.cn 80 7s ingress-tomcat nginx tomcat.iproute.cn 80 7s $ kubectl describe ing Rules: Host Path Backends ---- ---- -------- nginx.iproute.cn / nginx-service:80 (10.244.140.109:80,10.244.196.149:80,10.244.196.150:80) Rules: Host Path Backends ---- ---- -------- tomcat.iproute.cn / tomcat-service:8080 (10.244.140.110:8080,10.244.196.151:8080,10.244.196.153:8080) ``` 访问测试 ![image-20240914154740672](Service/image-20240914154740672.png) 其中nginx多次访问主机名,可以看到负载均衡 ![image-20240914154758983](Service/image-20240914154758983.png) ## Https代理 创建证书 ```bash # 生成证书 $ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=iproute.cn" # 创建密钥 $ kubectl create secret tls tls-secret --key tls.key --cert tls.crt ``` 创建资源清单 ```yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: https-nginx spec: tls: - hosts: - nginx.iproute.cn secretName: tls-secret # 指定秘钥 rules: - host: nginx.iproute.cn http: paths: - path: / pathType: Prefix backend: service: name: nginx-service port: number: 80 ingressClassName: nginx --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: tomcat-https spec: tls: - hosts: - tomcat.iproute.cn secretName: tls-secret # 指定秘钥 rules: - host: tomcat.iproute.cn http: paths: - path: / pathType: Prefix backend: service: name: tomcat-service port: number: 8080 ingressClassName: nginx ``` 访问测试 ![image-20240914155615236](Service/image-20240914155615236.png) 可以看到负载均衡 ![image-20240914155628119](Service/image-20240914155628119.png)