08-27-周三_17-09-29

This commit is contained in:
2025-08-27 17:10:05 +08:00
commit 86df397d8f
12735 changed files with 1145479 additions and 0 deletions

13
node_modules/dagre-d3-renderer/lib/intersect/index.js generated vendored Normal file
View File

@@ -0,0 +1,13 @@
import node from './intersect-node'
import circle from './intersect-circle'
import ellipse from './intersect-ellipse'
import polygon from './intersect-polygon'
import rect from './intersect-rect'
export default {
node,
circle,
ellipse,
polygon,
rect
}

View File

@@ -0,0 +1,7 @@
import intersectEllipse from './intersect-ellipse'
function intersectCircle (node, rx, point) {
return intersectEllipse(node, rx, rx, point)
}
export default intersectCircle

View File

@@ -0,0 +1,24 @@
function intersectEllipse (node, rx, ry, point) {
// Formulae from: http://mathworld.wolfram.com/Ellipse-LineIntersection.html
const cx = node.x
const cy = node.y
const px = cx - point.x
const py = cy - point.y
const det = Math.sqrt(rx * rx * py * py + ry * ry * px * px)
let dx = Math.abs(rx * ry * px / det)
if (point.x < cx) {
dx = -dx
}
let dy = Math.abs(rx * ry * py / det)
if (point.y < cy) {
dy = -dy
}
return {x: cx + dx, y: cy + dy}
}
export default intersectEllipse

View File

@@ -0,0 +1,65 @@
/*
* Returns the point at which two lines, p and q, intersect or returns
* undefined if they do not intersect.
*/
function intersectLine (p1, p2, q1, q2) {
// Algorithm from J. Avro, (ed.) Graphics Gems, No 2, Morgan Kaufmann, 1994,
// p7 and p473.
// Compute a1, b1, c1, where line joining points 1 and 2 is F(x,y) = a1 x +
// b1 y + c1 = 0.
const a1 = p2.y - p1.y
const b1 = p1.x - p2.x
const c1 = (p2.x * p1.y) - (p1.x * p2.y)
// Compute r3 and r4.
const r3 = ((a1 * q1.x) + (b1 * q1.y) + c1)
const r4 = ((a1 * q2.x) + (b1 * q2.y) + c1)
// Check signs of r3 and r4. If both point 3 and point 4 lie on
// same side of line 1, the line segments do not intersect.
if ((r3 !== 0) && (r4 !== 0) && sameSign(r3, r4)) {
return /* DONT_INTERSECT */
}
// Compute a2, b2, c2 where line joining points 3 and 4 is G(x,y) = a2 x + b2 y + c2 = 0
const a2 = q2.y - q1.y
const b2 = q1.x - q2.x
const c2 = (q2.x * q1.y) - (q1.x * q2.y)
// Compute r1 and r2
const r1 = (a2 * p1.x) + (b2 * p1.y) + c2
const r2 = (a2 * p2.x) + (b2 * p2.y) + c2
// Check signs of r1 and r2. If both point 1 and point 2 lie
// on same side of second line segment, the line segments do
// not intersect.
if ((r1 !== 0) && (r2 !== 0) && (sameSign(r1, r2))) {
return /* DONT_INTERSECT */
}
// Line segments intersect: compute intersection point.
const denom = (a1 * b2) - (a2 * b1)
if (denom === 0) {
return /* COLLINEAR */
}
const offset = Math.abs(denom / 2)
// The denom/2 is to get rounding instead of truncating. It
// is added or subtracted to the numerator, depending upon the
// sign of the numerator.
let num = (b1 * c2) - (b2 * c1)
const x = (num < 0) ? ((num - offset) / denom) : ((num + offset) / denom)
num = (a2 * c1) - (a1 * c2)
const y = (num < 0) ? ((num - offset) / denom) : ((num + offset) / denom)
return { x, y }
}
function sameSign (r1, r2) {
return r1 * r2 > 0
}
export default intersectLine

View File

@@ -0,0 +1,5 @@
function intersectNode (node, point) {
return node.intersect(point)
}
export default intersectNode

View File

@@ -0,0 +1,55 @@
import intersectLine from './intersect-line'
/*
* Returns the point ({x, y}) at which the point argument intersects with the
* node argument assuming that it has the shape specified by polygon.
*/
function intersectPolygon (node, polyPoints, point) {
const x1 = node.x
const y1 = node.y
const intersections = []
let minX = Number.POSITIVE_INFINITY
let minY = Number.POSITIVE_INFINITY
polyPoints.forEach(function (entry) {
minX = Math.min(minX, entry.x)
minY = Math.min(minY, entry.y)
})
const left = x1 - node.width / 2 - minX
const top = y1 - node.height / 2 - minY
for (let i = 0; i < polyPoints.length; i += 1) {
const p1 = polyPoints[i]
const p2 = polyPoints[i < polyPoints.length - 1 ? i + 1 : 0]
const intersect = intersectLine(node, point,
{x: left + p1.x, y: top + p1.y}, {x: left + p2.x, y: top + p2.y})
if (intersect) {
intersections.push(intersect)
}
}
if (!intersections.length) {
console.log('NO INTERSECTION FOUND, RETURN NODE CENTER', node)
return node
}
if (intersections.length > 1) {
// More intersections, find the one nearest to edge end point
intersections.sort(function (p, q) {
const pdx = p.x - point.x
const pdy = p.y - point.y
const distp = Math.sqrt(pdx * pdx + pdy * pdy)
const qdx = q.x - point.x
const qdy = q.y - point.y
const distq = Math.sqrt(qdx * qdx + qdy * qdy)
return (distp < distq) ? -1 : (distp === distq ? 0 : 1)
})
}
return intersections[0]
}
export default intersectPolygon

View File

@@ -0,0 +1,32 @@
function intersectRect (node, point) {
const x = node.x
const y = node.y
// Rectangle intersection algorithm from:
// http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes
const dx = point.x - x
const dy = point.y - y
let w = node.width / 2
let h = node.height / 2
let sx, sy
if (Math.abs(dy) * w > Math.abs(dx) * h) {
// Intersection is top or bottom of rect.
if (dy < 0) {
h = -h
}
sx = dy === 0 ? 0 : h * dx / dy
sy = h
} else {
// Intersection is left or right of rect.
if (dx < 0) {
w = -w
}
sx = w
sy = dx === 0 ? 0 : w * dy / dx
}
return {x: x + sx, y: y + sy}
}
export default intersectRect